

ORGANIZED BY:

<u>register</u>

Biomasa y carbón Alternativas Limpias Para El Desarrollo De Colombia

Farid Chejne Janna

Universidad Nacional de Colombia Academia de Ciencias Naturales, Físicas y Afines Programa Energética 2030, Colombia Científica Red ABISURE

Agenda

- 1. Introducción: Qué nos motiva hacer las cosas?
- 2. Qué tenemos?
- 3. En qué consiste lo que tenemos?
- 4. Cómo lo haríamos?
- **5. Comentarios finales**

1. Introducción: Qué nos motiva hacer las cosas?

Energías Limpias y Economía Circular

CC 3.0 Catherine Weetman 2016

Energía y desarrollo económico social en un país

Existe correlación directa entre la energía y el crecimiento económico, desarrollo científico, tecnológicos y calidad de vida de una sociedad.

Transición energética

Consumo mundial de energía por recurso energético

Decisión de China a apostar por Solar FV

Tomado de: International Energy Outlook 2017, US EIA. https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf

investigación de alto nivel para

El carbón sigue participando de manera significativa.

El sector farmacéutico, el alimentario y el agropecuario son nichos de oportunidades.

- Dar valor agregado a la biomasa y al carbón.
- Captura de CO2

2. Qué tenemos?

Reservas por más de 300 años y parte de ellas se explotan sin valor agregado

Alto potencial energético de la biomasa residual en Colombia, UPME 2013

Biomasa: Recurso Potencial en Colombia

Residuos lignocelulósico

Residuos de ganado

Residuos urbanos

Residuos agroindustriales

WWF ONG

WWF ONG

CENICAFÉ

Residuos Miles TON/año

Residuos de arroz	360
Residuos de palma de aceite	460
Residuos de banano	78
Residuos de plátano	180
Residuos de cacao	40

Residuos de café				
Miles TON/año	GJ/año			
200	3.3			

UPME

Residu	ios palma					
miles Ton/año	GJ/año			Residuos en una planta de beneficio		
5600	73.72		-	Tusa		20.22%
	1		ſ	Fi	bra	13.65 %
				Cu	esco	5.63%
	i		>	Cei	nizas	0.53%
				Lc	odos	0.02 m³/ton
				Eflu	entes	0.8 m³/ton
				Bie	ogás	0.2 m³/ton
Г				-	 	
	Biogas MWh/día	MWh/día	M	Tusa Wh/día		
	54.75	188.37		94.185		
						CE

3. En qué consiste lo que tenemos?

Biomasa: Producto de la fotosíntesis.

Adapted from: Alonso, et al , Chem. Soc. Rev. 41 (2012) 8075-98.

Carbón son cadenas desordenadas de grafenos

Carbón para producir:

- Gas Combustible: Metano, syngas.
- Líquidos: diesel, metanol, amoníaco and químicos.
- **Sólidos:** Carbón activado, fibras, nanotubos, fulerenos, diamantes, grafenos, grafitos, carbono negro.

rings to illustrate the essential differences between (a) gra (b) non-graphitizable carbons (Franklin, 1950, 1951).

Carbones activados

Coques

Nanotubos

Fibras

4. Cómo lo haríamos?

TRADITIONAL– Low Market Attractiveness-Low Competitive StrengthCORE– Medium Market Attractiveness-High Competitive StrengthPERFORMANCE – High Market Attractiveness-High Competitive Strength

National Coal Council: COAL IN A NEW CARBON AGE. Powering a wave of innovation in advanced products & manufacturing

The National Coal Council is a Federal Advisory Committee established under the authority of the U.S. Department of Energy. Individuals from a diverse set of backgrounds and organizations are appointed to serve on the NCC by the U.S. Secretary of Energy to provide advice and guidance on general policy matters relating to coal and the coal industry.

Donado por Dr. Poveda

Biomasa: Son cadenas de moléculas complejas.

Adaptada de: Alonso, et al , Chem. Soc. Rev. 41 (2012) 8075-98.

Procesos termoquímicos para aprovechar biomasa y carbón

Procesos termoquímicos:

Γ	1. Evaporation 2. Torrefaction		3. Pyrolysis	4. Gasification	5. Combustion of Vapors
	Water Water Stort the fire!	Light compounds, extractives	Crude pyrolysis	Syngas	Pyrolysis vapors Torrefaction vapors
T°	100-200 °C	225-300 °C	300-650 °C	700-850 °C	450-2000 °C
Products	Solid: Dried wood Vapor: Water	Solid: Roasted wood Vapor: Water, volatile organics	Solid: Charcoal Vapor: Light organics, heavy organics	Solid: Ash Vapor: Syngas (CO, CO ₂ , H ₂ . CH ₄ , H ₂ O)	CO ₂ , CO, H ₂ O
Description	Endothermic; Evaporation; External heat penetrates particle	Endothermic; Hemicellulose and amorphous cellulose decomposition, Light extractives evaporation, Intermolecular dehydration reactions; Mass density decreases; Volatile organics can combust	Endothermic for fast pyrolysis, exothermic for slow pyrolysis; Solid, liquid, and vapor reactions; Cellulose decomposition, Lignin decomposition; Mass density decreases; Volatile organics can combust	Endothermic if water is oxidizing agent, exothermic if oxygen is oxidizing agent; Volatilization of carbon, hydrogen, and oxygen in char; Gasification of volatile pyrolysis oil; Syngas can combust	Exothermic; Consumption of oxygen; Requires ignition at high temperatures and/or pressures

Fuente: Manuel Gracía-Perez, et. Al.

Procesos termoquímicos:

Combustion > 1500 °C, Gasification 600 – 1400 °C, Fast Pyrolysis 350 – 600 °C, Torrefaction: 220 - 300 °C

Fuente: Manuel Gracía-Perez, et. Al.

Rutas para producir diferentes productos a partir de la gasificación

National Renewable Energy Laboratory P.L. Spath and D.C. Dayton Prepared under Task No. BBB3.4210

Gasification Process to produce UREA

Phase 1: MTPA UREA PLANT with POWER IMPORT (Major Flows and Compressor Loads Shown)

Novel Gasification Process (HyPr-RING)

HYDROGENO Azul & EMISSIONES NEGATIVE CO2

NETL implements this effort as part of DOE's Advanced Energy Systems Program.

COAL-BIOMASS TO LIQUIDS & POLYGENERATION

NETL implements this effort as part of DOE's Advanced Energy Systems Program.

Integration of calcium looping technology in existing cement plant for CO2 capture

K. Atsonios et al. / Fuel 153 (2015) 210-223

Rutas para producir diferentes productos a partir de la pirólisis rápida

Productos en el bioaceite obtenidos de la pirólisis rápida

Produced by the Staff at Pacific Northwest National Laboratory (PNNL), National Renewable Energy Laboratory (NREL), Office of Biomass Program (EERE) For the Office of the Biomass Program T. Werpy and G. Petersen, Editors

Source: Campuzanoa, Robert C. Brownb, Juan Daniel Martíneza: Auger reactors for pyrolysis of biomass and wastes Felipe. Renewable and Sustainable Energy Reviews

Production, activation, and applications of biochar in recent times

Biochar

Fuente: Yunchao Li, Bo Xing, Yan Ding, Xinhong Han, Shurong Wang: A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresource Technology

5. Comentarios finales

La eficiencia energética en la industria Colombiana

Es importante:

La ingeniería dura: tecnología de alto nivel.

La ingeniería blanda: modelación matemática avanzada.

La ciencia básica: generar nuevo procesos eficientes

We need to change the equation..

The authors want to thank

- the Alliance for Biomass and Sustainability Research–ABISURE-Universidad Nacional de Colombia, Hermes code 53024, for its support in the realization of this study.
- the project "Strategy of transformation of the Colombian energy sector in the horizon 2030" funded by the call 788 of Minciencias Scientific Ecosystem, Contract number FP44842-210-2018"

